skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nguyen, Bach"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 27, 2026
  2. Abstract We describe a connection between the subjects of cluster algebras, polynomial identity algebras, and discriminants. For this, we define the notion of root of unity quantum cluster algebras and prove that they are polynomial identity algebras. Inside each such algebra we construct a (large) canonical central subalgebra, which can be viewed as a far reaching generalization of the central subalgebras of big quantum groups constructed by De Concini, Kac, and Procesi and used in representation theory. Each such central subalgebra is proved to be isomorphic to the underlying classical cluster algebra of geometric type. When the root of unity quantum cluster algebra is free over its central subalgebra, we prove that the discriminant of the pair is a product of powers of the frozen variables times an integer. An extension of this result is also proved for the discriminants of all subalgebras generated by the cluster variables of nerves in the exchange graph. These results can be used for the effective computation of discriminants. As an application we obtain an explicit formula for the discriminant of the integral form over of each quantum unipotent cell of De Concini, Kac, and Procesi for arbitrary symmetrizable Kac–Moody algebras, where is a root of unity. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026